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Abstract

Popa and Noiri have introduced the notion of weakly (τ , β)-continuous functions. In this paper we
obtain several properties and new characterizations of weakly (τ , β)-continuous functions and show
that for the many of known results more strong statements are true. So we improve and strengthen
some of these results related to the weakly (τ , β)-continuous function.
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Introduction and Preliminaries

Semi-open sets, preopen sets, α-sets, β-open sets play an important role for generalization
of continuity in topological spaces. By using these sets several authors introduced and stud-
ied various modifications of continuity such as weak continuity, almost s-continuity [22],
p(θ)-continuity [6]. The notion of weakly (τ ,m)-continuous functions were introduced and
studied by Popa and Noiri [24] for unifying these three functions using minimal conditions.
They also defined weakly (τ , β)-continuous functions as a special case. Recently Basu and
Ghosh [5] have also used independently this function under the name of (θ, β)-continuous
functions when studying β-closed spaces and they listed several properties of this functions
without proof. We give new characterizations, improve and strengthen some of these results
related to the weakly (τ , β)-continuous functions.

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y ) represent nonempty topolog-
ical spaces on which no separation axioms are assumed, unless otherwise mentioned. For
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a subset S of (X, τ), cl(S) and int(S) represent the closure of S and the interior of S, re-
spectively. A subset S of a space (X, τ) is said to be regular open [34] (resp. regular closed
[34]) if S = int(cl(S)) (resp. S = cl(int(S))). A point x of X is called a θ-cluster [36]
point of A if cl(U) ∩A ̸= ∅ for every open set U of X containing x. The set of all θ-cluster
points of A is called the θ-closure [36] of A and is denoted by clθ(A). A set A is said to
be θ-closed if A = clθ(A). The complement of a θ-closed set is said to be θ-open [19] .It
is known that a subset U of a space X is θ-open if and only if for any x ∈ U , there exists
an open set V in X such that x ∈ V ⊂ cl(V ) ⊂ U . A subset S of a space (X, τ) is said
to be semi-open [17] (resp. preopen [21], α-open [28], semi-preopen [4] or β-open [1] ) if
S ⊂ cl(int(S)) (resp. S ⊂ int(cl(S)), S ⊂ int(cl(int(S))), S ⊂ cl(int(cl(S))) ). The
family of all semi-open (resp.preopen, α-open, β-open) subsets of X is denoted by SO(X)
(resp. PO(X), αO(X), βO(X)) The complement of a semi-open (resp.preopen, α-open,
β-open) set is said to be semi-closed (resp. preclosed, α-closed, β-closed). If S is a subset
of a space X , then the β-closure of S, denoted by βcl(S), is the smallest β-closed set con-
taining S. The semiclosure (resp. preclosure, α-closure, β-closure) of S is similarly defined
and is denoted by scl(S) (resp. pcl(S), αCl(S), βCl(S)). The β-interior of S, denoted by
βint(S), is the largest β-open set contained in S. A subset S is said to be β-regular if it is
β-open and β-closed. The family of all β-closed (resp. β-regular) subsets of X is denoted by
βC(X) (resp. βR(X)) and the family of all β-open (resp. β-regular) subsets of X containing
a point x ∈ X is denoted by βO(X, x) (resp. βR(X, x)). A point x ∈ X is said to be in
the β-θ-closure (=sp-θ-closure [27]) of A, denoted by βclθ(A), if A ∩ βcl(V ) ̸= ∅ for every
V ∈ βO(X, x). If βclθ(A) = A, then A is said to be β-θ-closed (=sp-θ-closed [27]). The
complement of a β-θ-closed set is said to be β-θ-open (=sp-θ-open [27]).

The quasi-component [33] of a point x ∈ X is the intersection of all clopen subsets of
X which contain the point x. The quasi-topology τ q on X is the topology having as base
clopen subsets of (X, τ). The closure of each point in quasi-topology is precisely the quasi-
component of that point. The open (resp. closed) subsets of the quasi-topology is called
quasi-open [9] (resp. quasi-closed [9]). For a space (X, τ) the space (X, τ q) is called by
Staum [33] the ultraregular kernel of X and denoted by Xq for simplicity. A space (X, τ) is
called ultraregular [33] if τ = τ q.For a subset A of a space X , we define the quasi-interior
(resp. quasi-closure) of A, denoted by intq(A) (resp. clq(A)), defined by intq(A) = ∪{U is
quasi-open:U ⊂ A}, (resp. clq(A) = ∩{F is quasi-closed:A ⊂ F}).

Lemma 1. [27] Let A and B be any subsets of a space X . Then the following properties
hold:

(a) For a subset A of a space X , βclθ(A) = ∩{V : A ⊂ V and V ∈ βR(X)} =.∩{V : A ⊂
V and V is β-θ-closed}
(b) x ∈ βclθ(A) if and only if A ∩ V ̸= ∅ for each V ∈ βR(X, x).

(c) if A ⊂ B then βclθ(A) ⊂ βclθ(B).

(d) βcl θ(βcl θ(A)) = βcl θ(A).

(e)intersection of an arbitrary family of β-θ-closed sets in X is β-θ-closed in X .

(f) A is β-θ-open if and only if for each x ∈ A, there exists V ∈ βR(X, x) such that
x ∈ V ⊂ A.
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(g) If A ∈ βR(X) then A is β-θ-closed and β-θ-open.

(h)If A ∈ βO(X) then βcl(A) = βclθ(A).

(i) A ∈ βO(X) if and only if βcl(A) ∈ βR(X).

(j)A ∈ βC(X) if and only if βint(A) ∈ βR(X).

Definition 1. [24] A function f : X → Y is weakly (τ , β)-continuous for each x ∈ X and
each V ∈ βO(Y, f(x)), there exists an open set U containing x such that f(U) ⊂ βcl(V ).

Theorem 2. [25] For a function f : X → Y , the following are equivalent:

(a) f is weakly (τ , β)-continuous.

(b) For each x ∈ X and and each V ∈ βO(Y, f(x)), there exists an α-open set U containing
x such that f(U) ⊂ βcl(V ).

(c) f−1(V ) is α-open in X for every β-clopen set V of Y .

(d) f−1(V ) is clopen in X for every β-clopen set V of Y .

Theorem 3. [5] For a function f : X → Y , the following are equivalent:

(a) f is weakly (τ , β)-continuous.

(b) For each x ∈ X and each filter base F on X converges to x, the filter base f(F ) β-θ-
converges to f(x).

(c) For each x ∈ X and every net (xi) in X converges to x, (f(xi)) β-θ-converges to f(x).

Characterizations

Definition 2. [30] A subfamily mX of the power set ℘(X) of a nonempty set X is called
a minimal structure (briefly m-structure) on X if ∅ ∈ mX and X ∈ mX . By (X,mX), we
denote a nonempty subset X with a minimal structure mX on X . Each member of mX is
said to be mX-open and the complement of mX-open set is said to be mX-closed.

Remark 1. Let (X, τ) be a topological space. Then the families τ , τ q, SO(X), PO(X),
α(X), β(X) (=βO(X)), SR(X), βR(X) are all m-structures on X .

Definition 3. A function f : (X,mX) → (Y,mY ), where X and Y are nonempty sets with
minimal structures mX and mY , respectively,is said to be weakly M -continuous [25] (M -
continuous [30]) at x ∈ X if for each V ∈ mY containing f(x) there exists U ∈ mX

containing x such that f(U) ⊂ mY -Cl(V ) (resp. f(U) ⊂ V ). A function f : (X,mX) →
(Y,mY ) is said to be weakly M -continuous (resp. M -continuous) if it has the property at
each point x ∈ X .

Theorem 4. For a function f : X → Y , the following are equivalent:

(a) f is weakly (τ , β)-continuous.
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(b) For each x ∈ X and each V ∈ βR(Y, f(x)), there exists a clopen set U containing x
such that f(U) ⊂ V .

(c) For each x ∈ X and each V ∈ βR(Y, f(x)), there exists a quasi-open set U of X
containing x such that f(U) ⊂ V .

(d) f : (X, τ q) → (Y, βO(Y )) is weakly M -continuous.

(e) f−1(V ) ⊂ intq(f
−1(βcl(V ))) for every V ∈ βO(Y ).

(f) clq(f−1(βint(F ))) ⊂ f−1(F ) for every F ∈ βC(Y ).

(g) clq(f−1(V )) ⊂ f−1(βcl(V )) for every V ∈ βO(Y ).

(h) f(clq(A)) ⊂ βclθ(f(A)) for each subset A of X .

(i) clq(f−1(B)) ⊂ f−1(βclθ(B)) for each subset B of Y .

Proof. (a)⇒(b): Let x ∈ X and V ∈ βR(Y, f(x)). Then by Theorem 2, f−1(V ) is clopen
set containing x in X . Set U = f−1(V ) this gives f(U) ⊂ V .

(b)⇒(c)⇒(a): These implications are clear from the definition of quasi topology.

(c)⇒(d)Let x ∈ X and V ∈ βR(Y, f(x)).Then by (c) there exists a quasi-open set U con-
taining x such that f(U) ⊂ V . Since every β-regular set is β-open, f is M -continuous, hence
weakly M -continuous.

(d)⇒(a) Let x ∈ X and V ∈ βO(Y, f(x)) then there exists a quasi-open set U containing x
such that f(U) ⊂ βcl(V ). Since U is quasi open there exists an open set W in U containing
x such that f(W ) ⊂ βcl(V ) and by Definition 1 f is weakly (τ , β)-continuous.

(c)⇒(e): Let V ∈ βO(Y ) and x ∈ f−1(V ). Then f(x) ∈ V and βcl(V ) ∈ βR(Y, f(x))
hence by (c), there exists a quasi-open set U of X containing x such that f(U) ⊂ βcl(V ).
Then x ∈ U ⊂ f−1(βcl(V )) and hence x ∈ intq(f

−1(βcl(V ))).

(e)⇔(a): It follows from Theorem 3.2 of [25].

(e)⇒(f): Let F ∈ βC(Y ), then Y − F ∈ βO(Y ) and by (e), we have f−1(Y − F ) ⊂
intq(f

−1(βcl(Y − F ))) i.e., X − f−1(F ) ⊂ intq(f
−1(βcl(Y − F ))) = intq(f

−1(Y −
βint(F ))) = X − clq(f

−1(βint(F ))) Hence we obtain clq(f
−1(βint(F ))) ⊂ f−1(F ).

(f)⇔(a): It follows from Theorem 2.1 of [26].

(g)⇔(a) It follows from Theorem 3.4 of [25].

(a)⇒(h)⇒(i)⇒(a): It follows from Theorem 3.3 of [25]. �

Corollary 5. For a function f : X → Y , the following are equivalent:

(a) f is weakly (τ , β)-continuous.

(b) For each x ∈ X and and each each V ∈ βR(Y, f(x)), there exists an open set U
containing x such that f(cl(U)) ⊂ V.

(c) f−1(V ) is θ-open and θ-closed in X for every V ∈ βR(Y ).

(d) f−1(V ) ⊂ intθ(f
−1(βcl(V ))) for every β-open V in Y .

 
 Properties of Weakly (τ;β)-Continuous Functions 49 



(e) clθ(f−1(βint(V ))) ⊂ f−1(V ) for every β-closed V in Y. ∈
(f) clθ(f−1(V )) ⊂ f−1(βcl(V )) for every β-open V in Y .

Corollary 6. The following properties are equivalent for a function f : X → Y :

(a) f is weakly (τ , β)-continuous.

(b) For each x ∈ X and each V ∈ βO(Y, f(x)), there exists an open set U containing x
such that f(int(cl(U))) ⊂ βcl(V ).

(c) For each x ∈ X and each V ∈ βO(Y, f(x)), there exists a regular open set U containing
x such that f(U) ⊂ βcl(V ).

(d) f−1(V ) ⊂ δ-int(f−1(βcl(V ))) for every V ∈ βO(Y ).

(e) δ-cl(f−1(βint(B))) ⊂ f−1(B) for every B ∈ βC(Y ).

(f) f(δ-cl(A)) ⊂ βclθ(f(A)) for every subset A of X .

(g) δ-cl(f−1(K)) ⊂ f−1(βclθ(K)) for every subset K of Y .

(h) δ-cl(f−1(V )) ⊂ f−1(βcl(V )) for every subset V ∈ βO(Y ).

Definition 4. A filter base F is said to be;

(a) β-θ-convergent [5] to a point x in X , if for any β-open set U containing x there exist
B ∈ F such that B ⊂ βcl(U),

(b) clopen convergent to a point x in X , if for any clopen set U containing x, there exist
B ∈ F such that B ⊂ U .

Theorem 7. A function f : X → Y is weakly (τ , β)-continuous if and only if for each
point x ∈ X and each filter base F in X that clopen converging to x the filter base f(F) is
β-θ-convergent to f(x).

Proof. Suppose that x ∈ X and F is any filter base in X that clopen converges to x. By
hypothesis for any β-open set V containing f(x) there exists a clopen set U containing x in
X such that f(U)⊂ βcl(V ). Since F is clopen convergent to x in X then there exists B ∈ F
such that B ⊂ U . It follows that f(B) ⊂ βcl(V ). This means that f(F) is β-θ-convergent
to f(x).

Conversely, let x be a point in X and V be a β-open set containing f(x). If we set F = {U :
U is clopen and x ∈ U}, then F will be a filter base which clopen converges to x. So there
exists U ∈ F such that f(U) ⊂ βcl(V ). This completes the proof. �

Definition 5. A net (xi) in a space X , θ-converges [36] (resp. clopen converges [11], β-θ-
converges [5]) to x if and only if for each open (resp. clopen, β-open, ) set U containing x,
there exists i0 such that xi ∈ cl(U) (resp. xi ∈ U , xi ∈ βcl(U)) for all i = i0.

Lemma 8. For a net (xi) in a space X;

(a) [8] if (xi) converges to x, then (xi) θ-converges to x .
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(b) [11] if (xi) converges or θ-converges to x, then (xi) clopen converges to x.

Theorem 9. For a function f : X → Y , the following statements are equivalent:

(a) f is weakly (τ , β)-continuous.

(b) For each x ∈ X and each net (xi) in X which clopen converges to x, the net (f(xi))
β-θ-converges to f(x).

(c) For each x ∈ X and each net (xi) in X which θ-converges to x, the net (f(xi)) β-θ-
converges to f(x).

(d) For each x ∈ X and each net (xi) in X which converges to x, the net (f(xi)) β-θ-
converges to f(x).

Proof.(a) ⇒ (b) Let x ∈ X and let (xi) be a net in X such that (xi) clopen converges to x.
Let V be a β-open set containing f(x). Since f is weakly (τ , β)-continuous and βcl(V ) ∈
βR(Y ) , there exists a clopen set U containing x such that f(U) ⊂ βcl(V ). Since (xi) clopen
converges to x, there exists i0 such that xi ∈ U for all i = i0. Hence f(xi) ∈ βcl(V ) for all
i = i0.

(b) ⇒ (c) Let x ∈ X and let (xi) be a net in X such that (xi) θ-converges to x. By Lemma
8, (xi) clopen converges to x. By (b), (f(xi)) β-θ-converges to f(x).

(c) ⇒ (d) Let x ∈ X and let (xi) be a net in X such that (xi) converges to x. By Lemma 8,
(xi) θ-converges to x. By (c), (f(xi)) β-θ-converges to f(x).

(d) ⇒ (a) Suppose that f is not weakly (τ , β)-continuous. Then there exists x ∈ X and a β-
open set V containing f(x) such that f(U) * βcl(V ) for all open U containing x. Consider
the set {xU : U is open set containing x}. Then (xU) converges to x but (f(xU)) does not
β-θ-converge to f(x). �

Proposition 10. [5] A net (xi) in a space X , β-θ-converges to x if and only if for each
β-regular set U containing x, there exists i0 such that xi ∈ U for all i = i0.

By Theorem 9 and Proposition 10 we have the following theorem.

Theorem 11. For a function f : X → Y , the following are equivalent:

(a) f is weakly (τ , β)-continuous.

(b) If for each x ∈ X and, a net (xi) in X clopen converges to x then for each V ∈
βR(Y, f(x)), there exists i0 such that f(xi) ∈ V for all i = i0.

(c) If for each x ∈ X and, a net (xi) in X θ-converges to x then for each V ∈ βR(Y, f(x)),
there exists i0 such that f(xi) ∈ V for all i = i0.

(d) If for each x ∈ X and, a net (xi) in X converges to x then for each V ∈ βR(Y, f(x)),
there exists i0 such that f(xi) ∈ V for all i = i0.

Definition 6. A function f : X → Y is called;

(a) weakly α-continuous [23] if for each x ∈ X and each open set V of Y containing f(x),
there exists an α-open U of X containing x such that f(U) ⊂ cl(V ),
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(b) θ-β-irresolute [13] (resp. weakly β-irresolute [27]) if for each x ∈ X and each V ∈
βO(Y, f(x)), there exists U ∈ βO(X, x) such that f(βcl(U)) ⊂ βcl(V ) (resp. f(U) ⊂
βcl(V ))

(c) slightly continuous [14] if f−1(V ) is clopen in X for every clopen set V of Y .

Theorem 12. If functions f : X → Y and g : Y → Z satisfy each one of the following three
properties, then the composition g ◦ f : X → Z is weakly (τ , β)-continuous:

(a) f is weakly α-continuous and g is weakly (τ , β)-continuous.

(b) f is weakly (τ , β)-continuous and g is θ-β-irresolute.

(c) f is slightly continuous and g is weakly (τ , β)-continuous.

Proof. (a) Let x ∈ X and W be a β-open subset of Z containing (g ◦f)(x). Since βcl(W ) ∈
βR(Z) and g is weakly (τ , β)-continuous, there exists a clopen set V of Y containing f(x)
such that g(V ) ⊂ βcl(W ). Since f is weakly α-continuous there exists U ∈ αO(X, x) such
that f(U) ⊂ V and hence we obtain (g ◦ f)(U) ⊂ βcl(W ). Therefore by Theorem 2, g ◦ f
is weakly (τ , β)-continuous.

(b) Let x ∈ X and W be a β-open subset of Z containing (g ◦ f)(x). Since g is θ-β-
irresolute, there exists V ∈ βO(Y, f(x)) such that g(βcl(V )) ⊂ βcl(W ). Since f is weakly
(τ , β)-continuous there exists an open sets U in X containing x such that f(U) ⊂ βcl(V ).
This shows that (g ◦ f)(U) ⊂ βcl(W ). Therefore g ◦ f is weakly (τ , β)-continuous.

(c) Let W be any β-regular subset of Z. Since g is weakly (τ , β)-continuous then by Theorem
2, the inverse image of W is clopen in Y . Since f is slightly continuous f−1(g−1(W )) =
(g ◦ f)−1(W ) is clopen in X . Therefore g ◦ f is weakly (τ , β)-continuous. �

Corollary 13. The composition of two weakly (τ , β)-continuous functions is weakly (τ , β)-
continuous.

Proof. By Remark 7.1 of [24] every weakly (τ , β)-continuous function is almost s-continuous
and by [12] every almost s-continuous is almost continuous in the sense of Singal [32]. Since
every almost continuous function is weakly α-continuous and slightly continuous [12, Corol-
lary 5.1] result follows from Theorem 12. �

Separation Axioms and co-βR-closed Graphs

Definition 7. A space X is said to be;

(a) ultra T0 [15] if for each pair of distinct points x and y of X , there exist a clopen set U
containing one of the points x and y but not the other,

(b) ultra Hausdorff [33] if every two distinct points of X can be separated by disjoint clopen
sets,

(c) ultranormal [33] if each pair of nonempty closed disjoint sets can be separated by disjoint
clopen sets,
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(d) clopen T1 [10] if for each pair of distinct points x and y of X , there exist clopen sets U
and V containing x and y respectively such that y /∈ U and x /∈ V ,

(e) β-T2 [27] if for each pair of distinct points x and y in X , there exist β-open sets U and V
of X containing x and y, respectively, such that U∩V = ∅ (equivalently βcl(U)∩βcl(V ) =
∅),

(f) β-normal [35] if for any pair of disjoint closed sets A and B, there exist disjoint β-open
sets U and V such that A ⊂ U and B ⊂ V .

Remark 2. Kohli and Singh proved that [15] ultra Hausdorff, clopen T1, and ultra T0 axioms
are all equivalent.

Definition 8. [25] A nonempty set X is with a minimal structure mX , (X,mX), is said to be
m-Hausdorff if for each distinct points x, y ∈ X , there exist U , V ∈ mX containing x and
y, respectively, such that U ∩ V = ∅.

Theorem 14. If f : (X, τ q) → (Y,mY ) is a weakly M -continuous function and (Y,mY ) is
m-Hausdorff, then f has quasi-closed point inverses in X .

Proof. Let y ∈ Y . We show that f−1(y) = {x ∈ X : f(x) = y} is quasi closed in X , or
equivalently A = {x ∈ X : f(x) ̸= y} is quasi open in X . Let x ∈ A. Since f(x) ̸= y and
(Y,mY ) is m-Hausdorff, there exist disjoint mY -open sets V1, V2 such that f(x) ∈ V1 and
y ∈ V2. Since V1 ∩ V2 = ∅ by Lemma 3.2 of [24], we have mY -Cl(V1) ∩ V2 = ∅. Thus
y /∈ mY -Cl(V1). Since f is weakly M -continuous function, there exists a quasi-open set U
containing x such that f(U) ⊂ mY -Cl(V1). Now suppose that U is not contained in A. Then
there exists a point u ∈ U such that f(u) = y. Since f(U) ⊂ mY -Cl(V1), y = f(u) ∈ mY -
Cl(V1). This is a contradiction. Therefore, U ⊂ A and hence A is quasi-open in X . �

Corollary 15. If f : (X, τ) → (Y, σ) is weakly (τ , β)-continuous and (Y, σ) is β-T2 then f
has quasi-closed point inverses in X .

Theorem 16. If f, g : X → Y is weakly (τ , β)-continuous function and Y is β-T2 , then
A = {x ∈ X : f(x) = g(x)} is quasi-closed in X .

Proof. If x ∈ X − A, then it follows that f(x) ̸= g(x). Since Y is β-T2, there exist U ∈
βO(Y, f(x)) and V ∈ βO(Y, g(x)) such that βcl(U) ∩ βcl(V ) = ∅. Since f and g are
weakly (τ , β)-continuous there exists clopen sets G and H with x ∈ G and x ∈ H such that
f(G) ⊂ βcl(U) and g(H) ⊂ βcl(W ), set O = G∩H . Then O is clopen, f(O)∩ g(O) = ∅
and A ∩ O = ∅. Thus every point of X − A has a clopen neighborhood disjoint from A.
Hence X − A is union of clopen sets or equivalently A is quasi-closed. �

Theorem 17. If f : X → Y is weakly (τ , β)-continuous function and Y is β-T2 , then
A = {(x, y) ∈ X ×X : f(x) = f(y)} is quasi-closed in X ×X .

Proof.Let (x, y) ∈ (X × X) − A, then it follows that f(x) ̸= f(y). Since Y is β-T2, there
exist U ∈ βR(Y, f(x)) and V ∈ βR(Y, f(y)) such that U ∩ V = ∅. Since f is weakly
(τ , β)-continuous f−1(U) and f−1(V ) are clopen in X hence so is f−1(U)×f−1(V ). Hence
(f−1(U)× f−1(V ))∩A = ∅. Thus every point of (X ×X)−A has a clopen neighborhood
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disjoint from A. Hence (X×X)−A is union of clopen sets or equivalently A is quasi-closed
in X ×X . �

Definition 9. A function f : (X,mX) → (Y,mY ) is said to has a strongly M -closed graph
[25] if and only if for each (x, y) ∈ (X×Y )−G(f) there exists an mX-open set U containing
x and an mY -open set V containing y such that (U ×mY -Cl(V )) ∩G(f) = ∅.

Lemma 18. [25] A function f : (X,mX) → (Y,mY ) has a strongly M -closed graph if and
only if for each (x, y) ∈ (X × Y ) − G(f) there exists an mX-open set U containing x and
mY -open set V containing y such that f(U) ∩mY -Cl(V ) = ∅.

Definition 10. A graph G(f) of a function f : X → Y is said to be co-βR-closed if for each
(x, y) ∈ (X × Y )−G(f), there exists an clopen set U in X containing x and V ∈ βR(Y, y)
such that (U × V ) ∩G(f) = ∅.

Remark 3. If a function f : (X,mX) → (Y,mY ) has the strongly M -closed graph, then for
the special case mX = τ q and mY = βO(Y ), G(f) has co-βR-closed graph and we may
state the following theorem.

Theorem 19. The following properties are equivalent for a graph G(f) of a function:

(a) G(f) is co-βR-closed.

(b) for each (x, y) ∈ (X × Y )−G(f), there exists a clopen set U containing x in X and V
∈ βR(Y, y) such that f(U) ∩ V = ∅.

(c) for each point (x, y) ∈ (X × Y ) − G(f), there exists a clopen set U containing x in X
and V ∈ βO(Y, y) such that. f(U) ∩ βcl(V ) = ∅.

(d) for each point (x, y) ∈ (X × Y )−G(f), there exists a quasi-open set U containing x in
X and V ∈ βO(Y, y) such that. f(U) ∩ βcl(V ) = ∅.

Theorem 20. If f : X → Y is weakly (τ , β)-continuous function and Y is β-T2 , then G(f)
is co-βR-closed. in X × Y .

Proof. First suppose Y is β-T2. Let (x, y) ∈ (X×Y )−G(f). It follows that f(x) ̸= y. Since
Y is β-T2, there exists V ∈ βO(Y, f(x)) and W ∈ βO(Y, y) such that βcl(V ) ∩ βcl(W ) =
∅. Since f is weakly (τ , β)-continuous, there exists a clopen set U = f−1(βcl(V )) in X
containing x such that f(U) ⊂ βcl(V ). Therefore f(U) ∩ βcl(W ) = ∅ and G(f) is co-βR-
closed with respect to X × Y . �

Theorem 21. Let f : X → Y have a co-βR-closed graph. Then the following properties
hold:

(a) if f is injective then X is ultra Hausdorff;

(b) if f is surjective then X is β-T2.

Proof. (a) Suppose that x and y are any two distinct points of X by the injectivity of f ,
(x, f(y)) /∈ G(f). Since G(f) is co-βR-closed, by Theorem 19, there exist a clopen set
U containing x and V ∈ βO(Y, f(y)) such that f(U) ∩ βcl(V ) = ∅. We have U ∩
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f−1(βcl(V )) = ∅. Therefore y /∈ U . Then U and X − U are disjoint clopen sets containing
x and y, respectively. Hence X is ultra Hausdorff.

(b) Let y1 and y2 be any two distinct points of Y . Since f is surjective there exists a point
x ∈ X such that f(x) = y2. Since G(f) is co-βR-closed and (x, y1) /∈ G(f) there exists a
clopen set U containing x and V ∈ βR(Y, y1) such that f(U)∩V = ∅. Therefore we have
y2 ∈ f(U) ⊂ Y − V ∈ βR(Y ) and hence Y is β-T2. �

Theorem 22. If f : X → Y is weakly (τ , β)-continuous, closed injection and Y is β-normal,
then X is ultranormal.

Proof. Suppose that A and B be any two disjoint closed subset of X . Since f is closed and
injective f(A) and f(B) are disjoint closed subset of Y . Since Y is β-normal f(A) and f(B)
can be separated by disjoint β-open sets. Hence there is a β-regular set W containing f(A)
and disjoint from f(B). Since f is weakly (τ , β)-continuous, the inverse image of W under
f is a clopen subset of X containing A and disjoint from B. Thus X is ultranormal. �

Definition 11. A space X is said to be

(a) β-regular [3] if for each closed set F and each point x ∈ X − F , there exist disjoint
β-open sets U and V such that x ∈ U and F ⊂ V ,

(b) β∗-regular if for each β-closed set A of X and x ∈ X such that x /∈ A, there exist disjoint
β-open sets U and V such that x ∈ U and A ⊆ V ,

(c) almost β-regular if for any regular closed set F ⊂ X and each point x ∈ X − F , there
exist disjoint β-open sets U and V such that x ∈ U and F ⊂ V .

Theorem 23. The following properties hold for a function f : X → Y :

(a) If X is a β∗-regular space and f is weakly (τ , β)-continuous, then f is θ-β-irresolute.

(b) If f : X → Y is weakly (τ , β)-continuous and Y is a β-regular space, then f is clopen
continuous.

(c) If f : X → Y is weakly (τ , β)-continuous and X is a almost β-regular space, then f is
weakly β-irresolute

Proof. (a) Let x ∈ X and V ∈ βO(Y, f(x)). Since f is weakly (τ , β)-continuous, there
exists U ∈ O(X, x) such that f(U) ⊆ βcl(V ). Since X is β∗-regular there exists W ∈
βO(X, x) such that βcl(W ) ⊆ U .Therefore we obtain f(βcl(W )) ⊆ βcl(V ). This shows
that f is θ-β-irresolute.

(b) Let x ∈ X and V be any open subset of Y containing f(x). Then there exists W ∈
βO(Y, f(x)) such that βcl(W ) ⊂ V . Since βcl(W ) ∈ βR(Y, f(x)) by Theorem 4, there
exists a clopen set U containing x such that f(U) ⊂ βcl(W ) ⊂ V . This shows that f is
clopen continuous.

(c) Let x ∈ X and V ∈ βO(Y, f(x)). Since f is weakly (τ , β)-continuous, there exists
regular open set U such that f(U) ⊆ βcl(V ). Then there exists W ∈ βO(X, x) such that
x ∈ W ⊂ βcl(W ) ⊂ U . Then f(W ) ⊂ βcl(V ) ⊂ V . This shows that f is weakly
β-irresolute. �
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Comparisons

Definition 12. A function f : (X, τ) → (Y, σ) is said to be

(a) almost s-continuous [22] (resp. weakly (τ , β)-continuous [24], p(θ)-continuous [6]) if
for each x ∈ X and each semiopen (β-open, preopen) set V containing f(x), there exists
an open set U containing f(x) such that f(U) ⊂ scl(V ) (resp. f(U) ⊂ βcl(V ), f(U) ⊂
pcl(V )),

(b) strongly β-irresolute function [21] if for each x ∈ X and each β-open set V of Y con-
taining f(x), there exists an open set U of X containing x such that f(U) ⊂ V ,

(c) completely β-irresolute [37] (resp. perfectly β-irresolute [37]) if f−1(V ) is regular open
(clopen) in X for every β-open set V of Y,

(d) almost clopen [10] if for each x ∈ X and each open set V in Y containing f(x), there
exists a clopen set U containing x such that f(U) ⊂ int(cl(V )),

(e) regular set-connected [9] if the preimage of every regular open subset of Y is clopen in
X .

Remark 4. We have the following implications for a function f : X → Y :

Perfectly β-irresolute⇒completely β-irresolute⇒strongly β-irresolute function ⇒weakly (τ , β)-
continuous⇒almost s-continuous⇒regular set connected⇒almost clopen⇒almost contin-
uous.

Remark 5. None of these implications is not reversible in general as related articles [10,24,37]
shows.

Covering Properties

Definition 13. A subset K of a nonempty set X with a minimal structure mX is said to
be m-compact [24] (m-closed [24]) relative to (X,mX) if any cover {Ui : i ∈ I} of K by
mX-open sets, there exists a finite subset I0 of I such that K ⊆ ∪{Ui : i ∈ I0} (K ⊆ ∪{mX -
Cl(Ui) : i ∈ I0}). (X,mX) is m-closed if X is m-closed relative to (X,mX).

Definition 14. A subset K of a space X is said to be β-closed [2] (resp. mildly compact [33],
quasi H-closed [31]) relative to X if for every cover {Vα : α ∈ I} of K by β-open (resp.
clopen, open) subsets of X , there exists a finite subset I0 of I such that K ⊂ ∪{βcl(Vα) :
α ∈ I0} (resp. K ⊂ ∪{Vα : α ∈ I0}, K ⊂ ∪{cl(Vα) : α ∈ I0}).

Definition 15. A topological space (X, τ) is said to be countably β-closed if every countable
cover of X by β-open sets has a finite subcover whose β-closures cover X .

Remark 6. For a subset A of a space X , A is β-closed relative to X if and only if every
cover of A by β-regular subsets of X has a finite subcover.
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Theorem 24. If a function f : X → Y is weakly (τ , β)-continuous and K is mildly compact
relative to X , then f(K) is β-closed relative to Y .

Proof. Let {Vα : α ∈ I} be any cover of f(K) by β-regular sets of Y . By Theorem 2,
{f−1(Vα) : α ∈ I} is a cover of K by clopen subsets of X . Therefore there exists a finite
subset I0 of I such that K ⊂ ∪{f−1(Vα) : α ∈ I0}. It follows from Remark 6 that f(K) is
β-closed. �

Corollary 25. If a function f : X → Y is weakly (τ , β)-continuous and K is quasi H-closed
relative to X , then f(K) is β-closed relative to Y .

Remark 7. A topological space (X, τ) is countably β-closed relative to X if and only if
every countable cover of X by β-regular sets has a finite subcover.

Definition 16. A topological space (X, τ) is called mildly countably compact [33] if every
countable clopen cover of X admits a finite subcover.

Theorem 26. Let f : (X, τ) → (Y, σ) be a weakly (τ , β)-continuous surjection.

(a) If X is mildly compact, then Y is β-closed.

(b) If X is mildly countably compact, then Y is countably β-closed.

Proof. (a) Let {Vi : i ∈ I} be a cover of Y consisting of β-regular sets. Since f is weakly
(τ , β)-continuous and onto, then by Theorem 2 each one of the sets Ui = f−1(Vi) is clopen
in X . Since {Ui : i ∈ I} is a clopen cover of X and since X is mildly compact, then for some
finite I0 ⊆ I , we have X = ∪i∈I0Ui. Thus Y = ∪i∈I0Vi, which shows that Y is β-closed.

(b) Similar to (a). �

Theorem 27. [20] Let f : (X,mX) → (Y,mY ) be a function. Assume that mX is a base
for a topology. If the graph G(f) is strongly M -closed, then mX-Cl(f−1(K)) = f−1(K)
whenever the set K ⊆ Y is mY -closed relative to (Y,mY ).

Corollary 28. If a function f : (X, τ q) → (Y,mY ) has a strongly M -closed graph, then
f−1(K) is quasi-closed in (X, τ q) for each set K which is mY -closed relative to (Y,mY ).

Corollary 29. If a function f : X → Y has co-βR-closed graph, then f−1(K) is quasi-
closed in X for every subset K which is β-closed relative to Y .

Theorem 30. If a function f : X → Y has a co-βR-closed graph and Y is β-closed then f
is weakly (τ , β)-continuous.

Proof. Let V ∈ βR(Y ), then by Lemma 1, Y − V ∈ βR(Y ). By the β-closedness of Y ,
Y − V is β-closed. By Corollary 29, f−1(Y − V ) = X − f−1(V ) is quasi-closed, hence
f−1(V ) is quasi open. Set U = f−1(V ), then f(U) ⊂ V , and by Theorem 4, f is weakly
(τ , β)-continuous. �

Corollary 31. Let Y be a β-closed β-T2 space. The following are equivalent for a function
f : X → Y :
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(a) f is weakly (τ , β)-continuous.;

(b) G(f) is co-βR-closed;

(c) for each K, β-closed relative to Y , f−1(K) is quasi-closed in X .

Proof. This is a direct consequence of Corollary 29 and Theorems 20 and 30. �

Conclusion. Weak (τ , β)-continuity is closely related with clopen sets and has similar prop-
erties with weakly clopen functions [35]. Then it is plausible to study a new function type
as a new form of weak M -continuity from a space with quasi-topology τ q, to a space with
an m-structure, that is a function f : (X, τ q) → (Y,mY ) which can be named as weakly
(τ q,m)-continuous functions.
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Proprietati ale functiilor slab (τ , β)-continue
Rezumat

Notiunea de functii slab (τ , β)-continue a fost introdusa de Popa si Noiri. In aceasta lucrare
obtinem cateva proprietati si o caracterizare noua a functiilor slab (τ , β)-continue si aratam
ca multe dintre rezultatele cunoscute pot fi intarite. Deci imbunatatim si intarim cateva dintre
rezultatele referitoare la functii slab (τ , β)-continue.
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